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Chiral superconductor |Z2 Z 0|0 1 0] 16,17
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Periodic table: different approaches

1.

Continuous systems: Dirac Hamiltonian, Clifford algebra
Bernard and LeClair, J Phys A 2002

Disordered systems: Surface state localization, random matrix

theory, nonlinear sigma model Ivanov, 9911147, Schnyder et al PRB 2008,

Ryu et al, NJP 2010

Lattice systems: Homotopy theory Schnyder et al PRB 2008,
K-theory Kitaev AIP Conf Proc 2009
Related to classification of symmetric spaces (cartan 1926-27)

Response theory, quantum anomaly Ryu et al, PRB 2012
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P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

In the modern literature, the phenomenon of exponential decay of eigenfunctions
of a quantum system in a disordered environment is called Anderson localization,

Chulaevsky and Suhov. Multi-scale Analysis for
Random Quantum Systems with Interaction




Disordered system in 3 dimension -
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Anderson localization of light:
Transition from ballistic transport to diffusive transport, to Anderson localization.
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Nature Photonics 7, 197 (2013)




» Weak localization
(Gorkov et al, 1979)

Fig. 2.5. Diffusion path of the conduction clectron in the disordered
system. The electron propagates in both directions (full and dashed
lines). In the case of quantum diffusion the probability to return to the
origin is twice as great as in classical diffusion since the amplitudes
add coherently.

Bergmann Phys Rep 1984

Transition amplitude
Aa—)b = ZApathi

|Aa—>b |2= Zl A |2 +Z AiA;

i i)
<Z AZ.A;> #0 for time-reversed path A = A,
i%]

(possible only when a =b)
5 A P=2X)AF

coherent back-scattering

(Constructive interference)

Note: elastic scattering (static disorder)
does not destroy quantum coherence
(inelastic: phonons, other electrons... etc)



Weak localization vs weak anti-localization
(Hikami et al, 1980)

Effect of magnetic field
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FIG. 17. The magnetocomdactance curve of a Mg film with dif-
A aG(s) A aG(B) g g

/ ferent coverages of Au. [AL(H) is the magnetoconductance,
\ and L _=e2/27*.] The coverages shown are in percent of an
\/_ atomic layer. Increasing Au coverage converts the positive

magnetoconductance to negative. Full curves through the data
points are fits using the theory of Hikami, Larkin, and Nagaoka

Weak Localization Weak (1980). Figure is taken from Bergmann (1982b).
Anti-Localization
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Fig: Brahlek et al, Solid State Comm 2015
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E. Abrahams
Serin Physics Labovatory, Rulgers University, Piscataway, New Jevsey 08854

and

P. W. Anderson,'® D. C. Licciardello, and T. V. Ramakrishnan(®

Joseph Henvry Labovatovies of Physics, Princeton University, Princeton, New Jersey 08540
(Received 7 December 1978)

: , Flow follows
* one-parameter scaling g=Gl/(e’h) extended ,
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— + All wave functions of disordered systems in 1D and 2D are localized
» Exception (in 2D): Quantum Hall effect, spin-orbit interaction

Lagendijk et al, Phys Today 2009
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[Exception 1]
Quantum Hall effect (1980)

Localized states vs extended states

Broadened LL due to
o~ disorder

---------------
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Abraham et al’s conclusion does not apply
(since QHE is in a different universality class)

* Extended state -><- earlier conclusion. Why?
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Prog. Theor. Phys. Vol. 63, No. 2, February 1980, Progress Letters
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[Exception 2] “Spin-Orbit Interaction: and Magnetoresistance

in the Two Dimensional Random System

5k £ Shinobu HIKAMI, Anatoly I. LARKIN® and Yosuke NAGAOKA ST
Research Institute for Fundamental Physics
Kyoto University, Kyoto 606
(Received November 5, 1979)

Effect of the spin-orbit interaction is studied for the random potential scattering in two
dimensions by the renormalization group method. It is shown that the localization behaviors
are classified in the three different types depending on the symmetry. The recent observation
of the negative magnetoresistance of MOSFET is discussed.

-

= O

=

b orthogonal (TR preserved, spin preserved),
=

> unitary (TR broken),

symplectic (TR preserved, spin broken)

In o Ostrovsky’s slide



Connection with Random matrix theory
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Figure 1.1. Slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei.
Reprinted with permission from The American Physical Society, Rahn et al., Neutron resonance
spectroscopy, X, Phys. Rev. C 6, 1854-1869 (1972).

Problem : excitation spectrum of heavy nuclei
many-body problem; do not know Hamiltonian

Solution : write Hamiltonian as random matrix
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“Random”™ Gaps. The statistics of nearest-neighbor spacings range from random to uniform (<’s indicate spacings
too clase for the figure to resolve). The second calumn shows the primes from 7,791 097 to 7,701 877, The third coi-
umn shows energy levels for an excited heavy {Erbium) nucleus. The fourth column is a “length spectrum”™ of period-
ic trajectories for Sinai billiards. The fifth column is a spectrum of zeroes of the Riemann zeta function. (Figure cour-
tesy of Springer-Verlag New York, Inc, “Chaotic motion and random matrix theories” by O. Bohigas and M. J
Giannoni in Mathematical and Computational Methods in Nuclear Physics, J M. Gomez et al., eds., Lecture Notes in
Bhysics, volume 200 (1984), pp. 1-99 )
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3.4. The setting. Dyson now considers a general Hilbert space V with
a group G acting on it by unitary and anti-unitary operators. The physical
meaning of the group G is that of the group of symmetries of the particu-
lar quantum system which is to be treated statistically by a random matrix
model. The symmetry group G 1s meant to be quite arbitrary; in Dyson’s
words, it “may be a rotation group, or an isotopic-spin rotation group, or a
time-inversion group, or all of these in combination.”

Needless to say, the ‘good” Hamiltonians are those that commute (in the
sense just described) with all of the symmetry operations from G. The ques-
tion (pointedly asked by Dyson) then is: what can be said about the structure
of the set of all good Hamiltonians, which are compatible with these symme-
try constraints?

Zirnbauer’s 2011 talk at Muenchen



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 3, NUMBER ¢ NOVEMBER-DECEMBER 1962

Freeman J. Dyson

Institule for Advanced Study, Princeton, New Jersey
(Received June 22, 1962)

Using mathematical tools developed by Hermann Weyl, the Wigner classification of group-repre-
sentations and co-representations is clarified and extended. The three types of representation, and
the three types of co-representation, are shown to be directly related to the three types of division
algebra with real coefficients, namely, the real numbers, complex numbers, and quaternions. The
author’s theory of matrix ensembles, in which again three possible types were found, is shown to be in
exact correspondence with the Wigner classification of co-representations. In particular, it is proved
that the most general kind of matrix ensemble, defined with a symmetry group which may be com-
pletely arbitrary, reduces to a direct product of independent irreducible ensembles each of which
belongs to one of the three known types.

Orthogonal, unitary, symplectic




Wigner-Dyson classes

TABLE I. Summary of Dyson’s threefold way. The Hermitian
matrix ‘H (and its matrix of eigenvectors U/) are classified by an
index Se{l24}, depending on the presence or absence of
time-reversal (TRS) and spin-rotation (SRS) symmetry.

I TRS SRS Hom )

l yes yes real orthogonal ~ GOE:T*=1

2 no irrelevant complex unitary GUE: T2=0

4 yes no real quaternion symplectic  ggg: T2=-1
- 4. L] L] L]

Distribution of
NN spacing 5

—

fa?

level repulsion:

P(s<<1) ~ sP

GOE

2

.5

3

Fig from Altshuler’s ppt



In the first half of the 1990°s there was quite some activity to work out
the density of states for a system with disorder. And although all groups
agreed that they were addressing exactly the same physical problem, there
was a cacophony of different predictions for the density of states, varying
from vanishing linearly to vanishing with a disorder-dependent exponent, to
finite (at zero energy). to logarithmically divergent.

4.7. Resolution. When the controversy did not abate, we decided to write
a Physics Report with Alex Altland and Ben Simons, where we pointed out
that all proposals but one were inappropriate because they derived from mod-
els which belonged to symmetry classes different from the particular symme-
try class of the problem at hand, which 1s CI.

This case study once again underlined a point made by Wigner and Dyson:
that 1t 1s crucial to understand what 1s the symmetry class of the problem you
are looking at.

Zirnbauer’s 2011 talk at Muenchen



Altland-Zirnbauer classes

PHYSICAL REVIEW B VOLUME 55, NUMBER 2 1 JANUARY 1997-11
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Alexander Altland and Martin R. Zimbauer 2rticle-hole symmetry
Institut fur Theoretische Physik, Universitat zu Koln, Zulpicherstrasse 77, 50937 Koln, Germany

(Received 4 March 1996)

Normal-conducting mesoscopic systems in contact with a superconductor are classified by the symmetry
operations of time reversal and rotation of the electron’s spin. Four symmetry classes are identified, which
correspond to Cartan’s symmetric spaces of type C, C1, D, and DIII. A detailed study is made of the systems
where the phase shift due to Andreev reflection averages to zero along a typical semiclassical single-electron
trajectory. Such systems are particularly interesting because they do not have a genuine excitation gap but
support quasiparticle states close to the chemical potential. Disorder or dynamically generated chaos mixes the
states and produces forms of universal level statistics different from Wigner-Dyson. For two of the four
universality classes, the n-level correlation functions are calculated by the mapping on a free one-dimensional
Fermi gas with a boundary. The remaining two classes are related to the Laguerre orthogonal and symplectic
random-matrix ensembles. For a quantum dot with a normal-metal—superconducting geometry, the weak-
localization correction to the conductance is calculated as a function of sticking probability and two perturba-
tions breaking time-reversal symmetry and spin-rotation invariance. The universal conductance fluctuations are
computed from a maximum-entropy S-matrix ensemble. They are larger by a factor of 2 than what is naively
expected from the analogy with normal-conducting systems. This enhancement is explained by the doubling of
the number of slow modes: owing to the coupling of particles and holes by the proximity to the superconduc-
tor, every cooperon and diffusion mode in the advanced-retarded chan ntails. ing mode in the
advanced-advanced (or retarded-retarded) channel. [S0163-1829(97)0 "




e Particle-hole symmetry of superconductor
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Symmetries of a Hamiltonian

Unitary symmetry (translation, rotation, reflection ...)
Decompose H to irreducible blocks

Beyond unitary symmetry
(1) time-reversal symmetry (anti-unitary)

THT' =H, T=UK 0 noTRS
o g TRS =4 +1 TRSwith 72 =1 (integer spin)
SUHU, '=H,

-1 TRS with 72 = _1 (half-odd integer spin)
(2) particle-hole symmetry (anti-unitary)

o _ 0 no PHS
PRE==-H. P=U,K" pus_| 11 PHSwith P> =1 (odd parity: p-wave)
—U,HU," =-H_,

-1 PHS with p? = —1 (even parity: s-wave)
(3) TRS x PHS = chiral symmetry (unitary) o-=tp

TPH, (TP) =-H, $2=1,-1 (chose +1)
Unitary, but not the usual one

« Any unitary operator that anticommutes with the band Hamiltonian
SH(k)S' = —H(k) qualifies as a chiral symmetry.



Classifying topological insulator/superconductor
using AZ classes

PHYSICAL REVIEW B 78, 195125 (2008)

Classification of topological insulators and superconductors in three spatial dimensions

SHEE ik BE
Andreas P. Schnyder,! Shinsei Ryu,' Akira Furusaki,” and Andreas W. W. Ludwig?
'Kavli Institute for Theoretical Physics, University of California=Santa Barbara, Santa Barbara, California 93106, USA
*Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
"‘Deparfmem of Physics, University of California=Santa Barbara, Santa Barbara, California 93106, USA
(Received 11 April 2008; revised manuscript received 13 September 2008; published 26 November 2008)




- Wigner-Dyson (1951 -1963) : "three-fold way" complex nuclei
- Verbaarschot (1992 -1993)

chiral phase transition in QCD

- Altland-Zirnbauer (1997) : "ten-fold way" mesoscopic SC systems
3 internal symmetries
Cartan’s label TRS PHS SLS d=1 d=2 d=3
Standard A (unitary) 0 0 0 - Z - IQH,AQH
(Wigner-Dyson) Al (orthogonal) +1 0 0 - - -
Al (symplectic) -1 0 0 - 7, 7, 2D/3DTI
Chiral Alll (chiral unitary) 0 0 1 Z - Z
(sublattice) BDI (chiral orthogonal) +1 +1 1 {7 < - SSH (with 3 symm)
CII (chiral symplectic) -1 -1 1 Z - Z,
. Kitev chain
BdG D 0 +1 0 Zy z - Chiral p-wave
Bozolib C 0 -] 0 : 7 .
dogGo 'ubov DIII -1 +1 1 Z, % 7 :g“gag p-wave
€ bennes CI +1 - 1 : : 7

¢ (3x3-1)+2=10
* 5 non-trivial classes in each dimension
« Combined with unitary symm? - TCI... etc



Periodic table for topological insulators and superconductors

Alexei Kitaev AIP Conf Proc 2009
California Institute of Technology, Pasadena, CA 91125, U.S.A.

Abstract. Gapped phases of noninteracting fermions, with and without charge conservation and time-reversal symimetry,
are classified using Bott periodicity. The symmetry and spatial dimension determines a general universality class, which
corresponds to one of the 2 types of complex and 8 types of real Clifford algebras. The phases within a given class are further
characterized by a topological invariant, an element of some Abelian group that can be 0, Z, or Z,. The interface between
two infinite phases with different topological numbers must carry some gapless mode. Topological properties of finite syst
are described in terms of K-homology. This classification is robust with respect to disorder, provided electron states near
Fermi energy are absent or localized. In some cases (e.g., integer quantum Hall systems) the K-theoretic classification is s
to interactions, but a counterexample is also given.

Symmetry d "
AZ O = Im| 1 2 3:4 5 6 7 8
A 0 0 0 0O Z 0 O Z 0 Z |IQHE, AQHE J 5

O 7Z 0 7Z 0 |[|SSH, TT-flux state
Z 0 Zo Zo Z |TCI

0 Z 0 Zo Z, |SSH
0 0 Z 0 Zsy |Kitaevchain, chiral p-wave (spiniess)

0 0 | Z 0 Z

Al 1 0 0 0 0 0
BDI| 1 | 1| Z 0 0
D 0 | 0| Ze Z 0O

complex class
period 2
:'I:|

0 0 0 Z 0 |helical p-wave (spinful), He 3
Z 0 0 0 Z |2D/3DTI

Zo Z 0 0 0
Zo 7o 7 0 0 |d+id,d-idSC

0 Zo Zo Z 0 |0y, Oy singlet SC

4

All | -1 0 0 0 Zo Zo
cir| -1 -1 | Z 0 Zo
C 0 —1 0 0 Z 0
C1 1 —1 1 0O 0 Z

Real class
Period82




time-reversal symmetry
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Bott periodicity

particle-hole symmetry
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Grey: chiral



Topology of lattice system

“Flattened” Hamiltonian Q, Space of Q,
- Grassmannian: For chiral system,
=l — n 0
................ U(m+n) 4y
% G,inm(€) = ol (0 0, :[ + ]
< - (mU (n) g 0
TABLE II Altland-Zirnbauer classes
Cartan’s label T P S|1d 2d 3d|Space of Hamiltonians
Standard A (unitary) 0 0 0|0 Z O |{Qk € Gm+n,m(C)}
(Wigner-Dyson) |Al (orthogonal) +1 0 010 0 O |{Qk € Grsnm(CO)|Qr = Q-r}
All (symplectic) -1 0 0|0 Z2 Z:|{Qk € G2m+2n,2m(C)|icyQr(—ioy) = Q-k}
Chiral AIII (chiral unitary) [0 0 1|Z 0 Z |{g € U}
(sublattice) BDI (chiral orthogonal)(+1 +1 1| Z 0 O [{qx € U(m)|qr =q-k}
CII (chiral symplectic) -1 =1 1| Z 0 Zs|{ax € U(2m)|ioyqi(—ioy) = q_i}
BdG D 0 41 0(Z2 Z O [{Qx € Gomm(O)|m2Qf72 = — Qi }
(superconductor)|C 0 -1 0[0 Z 0 [{Qr€GCGomm(C)|myQi1y = —Q-r}
DIII -1 41 1|22 Z2 Z |{qx € U@2m)|af = —q_x}
CI +1-11|{0 0 Z|{qr€ U(m)|qr = q-k}




Homotopy theory

« Winding S' around S':
winding number

m,(S")=Z

« Wrapping S' around S?

m,(S?)=0

M,(S2)=Z ,(T2)=ZxZ



Topological numbers of complex classes

e Class Ain even dim: Chern number

FilGmaamll)) = B,
iﬁ(Gm—l—n;m(C)) = ol Note:
WS(C;ﬂl—i—n:?n(@)) = fF = ‘3((’:21(@)) =7

T o FF 3
e B | —
" nl Jra 27

« Class Alll in odd dim (with chiral symm): winding number

Tdeodd((U(n)) = Z. 0 :(O qk]
ﬁdEeven(({'r(ﬂ)) = 0, ‘ C]Z 0

(—1)" 0! / R o [( —1 )2n+1}
Wt = : i (
LT O Y e \ T i

* The Z numbers in real classes are also related to these two

|

.

=




complex class

Real class

Symmetry

, d
314

AZ © = I| 1 2 5 6 7 8
~ A| O O O0O|O0 Z 0/Z 0 Z 0 Z
2 A 0o o 1]z 0 zio zZ 0 Z 0
S AL 1L 0 0 P (i 0. Z 0 Zo Zo Z
BDI| 1 1 1] Z 00 Z 0 Zo Zo
D| 0 1 0[Z Z 0,0 0 Z 0 Z
DI -1 1 1| Z Zy Z{0 0 0 Z 0
o Al =10 oY Wed ()tlon Lect“11) z
T Cl| -1 -1 1| Z 7 \
q:) C 0 —1 0 0O Z 0 : Zo Zo Z 0 0
“ | 1 -1 1|0 0 Z:i0 Zy Zo Z O

IQHE, AQHE
SSH’

TClI
SSH

Kitaev chain, chiral p-wave (spinless)
helical p-wave (spinful), He 3
2D/3D TI

d+id, d-id SC

dyy» dyo.0 SiNglet SC



A brief time-line of periodic table (for non-interacting fermions)

Cartan,
symmetry space

4

Anderson

Wigner,
random matrix [

1930 1940 1950

Dyson,
3-fold way

insulator .

Quantum Hall
insulator
SOC in 2D Altland-
localization Zirnbauer
! classes
Scaling theory
of localization [
1970 1980 1990

Topological
insulator

Schnyder et al’'s
classification

Kitaev
periodic
table

2010



The garden of topological phases

Non-
interacting

Interacting

Strongly
Interacting

Symmetry-protected topological (SPT) phase

Fermion Boson
» Integer quantum Hall effect
- Topological insulator / @
. ... » Bosonic Tl

* Bosonic SC
spin

» Haldane’s odd integer-spin chain

Topological-order phase

 Fractional quantum Hall effect
« Chiral spin liquid

« Z, spin liquid (toric code)

UNDER CONSTRUCTION

(degenerate GND state, fractional QP, long-range entanglement)




